Теплообменник – устройство, предназначенное для эффективной передачи тепла от одного теплоносителя другому.
Такой процесс может быть осуществлён несколько раз в одной системе, ведь частным случаем теплообменника является и радиатор отопления, и газовый или электрический котёл.
Наиболее распространённая модель теплообменника, используемая в системе отопления, представляет собой 2 металлические ёмкости, которые подобно матрёшке находятся одна в другой, и через металлическую стенку производят передачу тепла.
Достоинства такого механизма заключается в том, что благодаря герметичной конструкции не происходит взаимное перемешивание однородных сред, а при использовании разных по физическим свойствам теплоносителей не происходит перемешивания.
Устройство теплообменника для систем отопления
Приспособление предназначено для передачи тепла от одного элемента к другому. В роли источника тепла и теплоносителя выступают различная жидкость, газ или пар.
Нестабильные среды разделены материалом с подходящим типом теплопроводности.
Простой пример теплообменника — комнатные радиаторы, в которых источником тепла является вода в системе отопления, нагреваемой средой — воздух в помещении.
В качестве разделяющего материала выступает металл, из которого состоит радиатор. Промежуточный материал, который используется при конструировании, должен обладать высокой степенью теплопроводности.
Хорошим вариантом для конструирования теплообменника будет применение медных элементов. Медь обладает большей в 7.5 раз теплопроводностью, чем сталь. Пластмассовые изделия в двести раз хуже проводят тепло, чем стальные. Сравнивая при одинаковых условиях 1.7 м медного, 12 м стального и 2 тыс. метров пластикового трубопровода получится передача одинакового количества тепла.
Виды
Существует 2 типа теплообменников:
Поверхностный
Наиболее распространённый тип теплообменника, который получил распространение не только в системах отопления зданий, но и во многих производственных процессах. В качестве теплоносителя, который может быть использован для передачи тепла в таких устройствах, используется не только вода, но и водяной пар, различные минеральные масла и химические вещества.
Поверхностные модели разделяются на рекуперативные и регенеративные:
- Рекуперативные – передают тепло через стенку теплоносителя.
- Регенеративные – такие теплообменники функционируют в периодическом режиме. Сначала горячий теплоноситель нагревает поверхность теплообменника, затем к стенкам, которые аккумулировали тепло, подводится холодный теплоноситель.
Смесительный
При использовании такого вида устройств, происходит проникновение горячего теплоносителя в холодный. В результате такого смешивания, происходит прямая передача тепла. В системе отопления такой вид теплопередачи используется редко.
Обычно, смесительный способ, применяется при солнечном нагреве воды, когда теплоноситель из теплогенератора поступает в накопительную ёмкость, в которой происходит смешивание, горячей и холодной жидкости.
Как сделать своими руками
Существует несколько типов теплообменников, каждый из которых обладает особой технологией производства.
Изготовление по методу труба в трубе, особенности подключения, схема
Устройство работает по такому несложному принципу горячая жидкость проходит по трубе малого диаметра, через стенки труб передаётся тепло воде, которая расположена в полостях трубы большего размера. Таким способом передаётся тепловая энергия и не перемешиваются жидкости, имеющие неоднородный характер, например, масло и вода. Такой тип агрегатов прост в изготовлении и в эксплуатации.
Фото 1. Схема теплообменника типа труба в трубе. Указано направление движение теплоносителя.
Инструменты и материалы
- две двухметровые трубы из меди, с различным диаметром — 102 мм и 57 мм;
- два тройника с углами 90 градусов, диаметр должен быть равен трубе большей;
- два коротких отрезка трубы, подходящие к размеру тройника;
- электрическая или газовая сварка, подойдёт и мощный паяльник с припоем для меди;
- болгарка, отрезной диск;
- рулетка.
Процесс изготовления
- На профиль трубы большего диаметра с двух сторон приваривается тройник, который следует расположить боковой стороной таким образом, чтобы туда вставить трубу меньшего размера.
Справка. При подключении такой конструкции, теплообменник рекомендуется расположить в горизонтальном положении, жидкости должны циркулировать разнонаправленно, это повысит КПД.
- После того как изделие меньшего диаметра вошло в тройник его проваривают с торцов.
- К свободным краям тройников привариваются патрубки, которые предназначены для подачи и вывода отопительной жидкости.
Воздушный пластинчатый
Приспособление устанавливается в газовую отопительную систему. Принцип действия заключается в передаче теплоэнергии от газообразного теплоносителя к рифлёной конструкции пластин, которая будет нагревать жидкость в трубопроводе.
А также этот тип устройств подойдёт для передачи тепла от одной жидкости, к другой.
Инструменты и материалы
- оборудование для сварки;
- болгарка;
- два листа из нержавеющей стали (рифлёной), толщина 4 мм;
- 1 лист плоский из нержавейки, толщина 4 мм;
- электроды.
Порядок работ
- Лист рифлёной стали разрезать на равные квадраты со сторонами 30 см. Для конструкции понадобится 31 квадрат.
- Из плоского листа нержавеющей стали нарезать ленты. Ширина 1 см, длина 30 см. Общая длина частей должна составить 18 метров — получится 60 шт.
- Квадраты из рифлёного материала сварить между собой при помощи полоски
1 см
- . Соединение проходит через
две противоположные стороны квадратов
В одном корпусе, имеющем форму куба, должно получиться 15 секций, которые обращены в одну сторону и 15 в другую.
Благодаря рифлёной поверхности происходит эффективная передача тепла от одного носителя к другому без взаимных перемещений различных либо однородных теплоносителей.
- В случаях, когда тепло будет передаваться при помощи жидкого теплоносителя, рекомендуется приварить коллектор. Распределитель лучше изготовить из нержавеющей стали. Для этого понадобится при помощи болгарки отрезать со стального листа прямоугольники 30х30 см (2 шт.) и 30х3 см — 8 штук. Из такого комплекта частей конструируется два коллектора имеющие вид квадратной крышки от коробка.
- В коллекторе сделать отверстие для патрубка, который послужит соединением с трубопроводом отопления.
- Отверстие на коллекторе делается ближе к одному из углов. При монтаже его на теплообменник расположение входного патрубка должно быть внизу агрегата, выводящая трубка всегда расположена вверху.
Теплообменник водяной для печи
Обыкновенная печь, работающая на дровах способна обогреть целый дом, если её присоединить к отопительной системе на водной основе.
Инструменты и материалы
- метровая труба из стали, диаметр 32.5 сантиметра;
- труба железная — 6 метров, диаметр 5.7 см;
- лист стали 4 мм толщины;
- сварочный аппарат;
- газовый резак.
Порядок работ
- Метровый отрезок трубы с диаметром 32.5 см поставить в горизонтальное положение на лист из стали и обвести маркером.
- Отверстие нужного размера вырезать газовым резаком. По макету металлического круга вырезать вторую такую же окружность.
- В металлических дисках вырезать по пять отверстий с диаметром 5.7 сантиметров. Отверстия должны быть расположены равномерно по отношению друг к другу, также как от середины, так и от края поверхности. Диски приварить к цилиндру трубы и постараться, чтобы отверстия были расположены параллельно.
- Изделие 5.7 мм нарезать при помощи болгарки, на части по 1 метру. Потребуется пять отрезков.
Фото 2. Схема водяного теплообменника для печи. Представляет из себя цилиндр, внутри которого расположены трубы меньшего диаметра.
- Каждая часть трубы монтируется в отверстие, нужно чтобы трубы выходили за пределы отверстий на 1 миллиметр. Сваривается приспособление электрической сваркой. В итоге должна получиться конструкция в форме металлического цилиндра, внутри которого расположены трубки меньшего размера. По этому трубопроводу будет идти раскалённый воздух и дым, трубы будут нагреваться и соответственно нагревать жидкий теплоноситель внутри.
- Чтобы жидкость циркулировала внутри металлической системы в нижней и верхней части следует приварить небольшие отрезки труб. Внизу агрегата через патрубок будет подаваться холодная вода, а через верхний патрубок направляться в отопительный механизм.
Технические характеристики
Пластины и прокладки могут изготавливаться из различных материалов, их выбор зависит от назначения агрегата, ведь сфера применения подобных теплообменников весьма широка. Мы же рассматриваем системы отопления и ГВС, где они выступают в качестве теплосилового оборудования. Для этой сферы пластины делаются из нержавеющей стали, а прокладки – из резины NBR или EPDM. В первом случае теплообменник из нержавеющей стали может работать с водой, нагретой до максимальной температуры 110 ºС, во втором – до 170 ºС.
Для справки. Данные теплообменники используются и для разных технологических процессов, когда сквозь них протекают кислоты, щелочи, масла и другие среды. Тогда пластины производятся из титана, никеля и различных сплавов, а прокладки – из фторкаучука, асбеста и других материалов.
Расчет и подбор теплообменника осуществляется с помощью специализированного программного обеспечения по таким параметрам:
- требуемая температура нагрева жидкости;
- исходная температура теплоносителя;
- необходимый расход нагреваемой среды;
- расход теплоносителя.
Примечание. В качестве греющей среды, протекающей сквозь пластинчатый теплообменник для ГВС, может выступать вода температурой 95 или 115 ºС, либо пар, нагретый до 180 ºС. Это зависит от типа котельного оборудования. Количество и размер пластин подбирается таким образом, чтобы на выходе получить воду с максимальной температурой не более 70 ºС.
Надо сказать, что преимущества пластинчатых теплообменников заключаются не только в скромных размерах и способности обеспечить большой расход. Дело в том, что диапазон подбираемых площадей обмена и расходов у рассматриваемых агрегатов чрезвычайно широк. Самые малые из них имеют площадь поверхности менее 1 м2 и рассчитаны на протекание 0.2 м3 жидкости за 1 час, а наибольшие – 2000 м2 при расходе свыше 3600 м3/ч. Ниже в таблице представлены технические характеристики, которые показывает эксплуатация пластинчатых теплообменников известного бренда ALFA LAVAL:
По исполнению теплообменные агрегаты бывают следующих видов:
- разборные: наиболее распространенный вариант, позволяющий быстро и качественно осуществлять ремонт и обслуживание скоростного теплообменника;
- паяные или сварные: такие аппараты не имеют резиновых прокладок, там пластины жестко соединены между собой и помещены в цельный корпус.
Примечание. Именно паяные теплообменники многие мастера-умельцы используют для частного дома, приспосабливая их под нагрев или охлаждение воды.
Как рассчитать тепловую мощность
Если выбран пластинчатый теплообменник, необходимо учитывать такие факты:
- какая мощность аппарата необходима;
- тип конструкции;
- качество материалов.
Расчёт мощности происходит по следующей формуле:
P = 1,16 х ∆Т / (t x V), где
Р — мощность, которая требуется;
1,16 — специально подобранная константа;
∆Т — разница температур;
t — время;
V — объем.
Продуктивность системы зависит от тока рабочих сред по обоим контурам. Подходящая модель для сборки определяется с учётом объёма помещения, которое нужно обогреть. Чем больше площадь, тем больше понадобится материалов.
Термогенераторная печь — обогрев, горячая вода и электричество из дров
Всем привет, предлагаю к рассмотрению интересную конструкцию дровяной печи, которую вы сможете сделать своими руками. Особенность конструкции в том, что печь способна генерировать электроток для зарядки мобильного телефона и прочих девайсов, за это отвечают элементы Пельтье. В качестве теплоносителя в печи выступает вода, хотя ее легко можно заменить маслом или другой жидкостью. Это значит, что к такой печи можно подключить батареи и отапливать помещение, как пример. Еще с помощью такой печи можно легко и просто получать горячую воду. Максимальная мощность, которую выдают элементы Пельтье, составляет 10 Ватт, а максимальное напряжение получается в районе 15 В. Если вам нужна более высокая мощность и напряжение, элементов Пельтье можно установить и побольше. Рассмотрим более подробно, как работает такая печь и как ее сделать. Список материалов:
— готовый корпус для печи (или листовая сталь, уголок и другие материалы); — стальные трубы; — дымовая труба; — автомобильный радиатор (от Волги или другой, объем желательно побольше); — элементы Пельтье (у автора 14 штук); — термопаста; — листовой алюминий: — фум-лента; — квадратные стальные трубы (для теплообменников); — водопроводный шланг; — гидравлический клапан (для сброса лишнего давления); — тройники для водопровода; — аккумулятор, электроника для контроля напряжения (и подобное по желанию).
Список инструментов:
— болгарка; — сварочный аппарат; — токарный станок; — дрель; — гаченные ключи.
Процесс изготовления печи:
Шаг первый. Изготовление корпуса печи
Корпус печи изготовлен из металла, автор использовал для таких целей старую емкость. Можно сделать подобную печь из листовой стали, старых газовых баллонов и так далее, вы можете просто модернизировать уже имеющуюся у вас буржуйку.
Устанавливаем дверку, а также дымовую трубу. В дымовой трубе обязательно делаем задвижку, а дверку печи делаем так, чтобы она закрывалась герметично. Это нужно для того, чтобы быстро затушить печь в случае необходимости. Если элементы Пельтье перегреются, они могут выйти из строя.
По размерам печь у автора небольшая, но чтобы получать больше тепла, можно сделать печь и побольше.
Шаг второй. Изготовление теплообменников
Шаг третий. Нагревательный контур
Внутри печи установлен нагревательный контур, в нем будет циркулировать наша вода, нагреваясь от углей и пламени. Для изготовления этого контура понадобятся стальные трубы, свариваем из них конструкцию, как у автора, все должно быть герметично и должно выдерживать высокое давление. Конечно, конструкция контура может быть и другой, чем больше будет нагреваемая площадь, тем эффективнее печь будет прогревать воду.
Шаг четвертый. Сборка печи
Все почти готово, можно собирать печь. Устанавливаем дверку, а внутрь печи монтируем нагревательный контур. Нагревательный контур привариваем к корпусу печи, чтобы он не шевелился. К печи также привариваем ножки, автор сделал их из круглых труб, заварив торцы листовой сталью.
Шаг пятый. Собираем «бутерброд»
Элементы Пельтье подключаем последовательно или параллельно, в зависимости от тока и напряжение, которое вы хотите получить.
Шаг шестой. Окончательная сборка и тестирование
Если систему оснастить хорошими аккумуляторами и умной электроникой, от протопки печи можно запасать довольно неплохие резервы электроэнергии. Удачи и творческих вдохновений, если надумаете повторить нечто подобное! Не забывайте делиться своими самоделками с нами!
Источник
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Как подключить самодельный теплообменник
Имеются 3 основных схемы подключения теплообменников — параллельная одноступенчатая, смешанная двухступенчатая и последовательная:
- Параллельный тип самый простой и надёжный, потому что нагрев воды происходит непосредственно в аппарате. Теплообменник монтируется параллельно отопительному трубопроводу.
- Двухступенчатая схема разработана для снижения расхода теплоносителя. Это даёт возможность использования тепловой энергии обратной воды в системе отопления.
Негативные моменты
Наряду с пользой теплообменника на дымоходе, стоит отметить и ряд негативных факторов. Во-первых, из-за такой конструкции температура выходящих газов существенно снижается. Это может провоцировать излишнее накапливание сажи, образование конденсата и ухудшение тяги.
Немаловажный момент обустройства такой системы отопления – это просчитать, какой объем воды нужен для ее полноценного функционирования. Если ее будет мало, система может перегреться, вода в ней закипит, и трубы могут разорваться
Кроме того, важно обеспечить герметичность швов.
В любом случае, обустройство теплообменника позволяет увеличить эффективность любой печи. В целях безопасности, как минимум, дважды в год следует проводить визуальную диагностику системы и ее обслуживание – чистку сажи, замену дефектных элементов и так далее. Тогда можно будет с уверенностью использовать теплообменник для отопления дома и нагрева воды в бане.
Функциональные особенности теплообменников
Прежде чем начать изготавливать теплообменник, следует понять характер выполняемой им функции в отопительной системе. Принцип работы этого приспособления реализован в устройствах электрокотлов, газовых и твердотопливных. Теплообменник представляет собой конструкцию из изогнутых труб, которые размещаются внутри отопительного оборудования и нагреваются при помощи источника энергии.
Вам может быть интересно:
По трубам теплообменника проходит теплоноситель, например, вода, которая нагревается и отправляется в радиаторы, на ее место поступает остывшая вода из батарей и снова нагревается. Таким образом, происходит отопление дома. В качестве теплоносителя могут использоваться газы, тогда в качестве нагревательного элемента будет работать рекуператор. Однако в жилых домах такой аппарат используется крайне редко.
Вам может быть интересно:
Установив в печь теплообменник, можно получить полноценную систему отопления.
Принцип работы
Без медного теплообменника не обходится ни одна отопительная система котлов. Принцип работы прост. Вода начинает циркулировать по змеевикам в трубах, нагревается, течет в трубопровод системы, в радиаторы, из которых возвращается назад, в уже остывшем виде.
В частных домах теплообменник устанавливают в целях превращения печки в водонагревательный котел. При самодельном устройстве важно учитывать размер и форму, чтобы обменник сочетался с габаритами камеры печки.
К обменнику подключаются радиаторы, трубопровод, трубы нагреваются равномерно, тепло распределяется по всему дому.
Подбор материала
Следует сразу отметить, что в домашних условиях создать теплообменник как на заводе практически невозможно. Вместе с тем, самодельная конструкция по функционалу не будет уступать созданной на предприятии.
Можно придать любую форму конструкции, но наиболее популярными вариантами является система, выполненная из нескольких металлических труб в виде решетки или пластин. В связи с тем, что температура горения достаточно высокая, тем более когда в качестве топлива используется уголь, следует особое внимание уделить выбору материала, а также уровню качества швов сварки. Кроме того, важную роль имеет тип металла, поскольку у каждого своя теплопроводность. Если взять медную трубу, то она в 7 раз будет превышать коэффициент теплопроводности, чем аналогичная труба, изготовленная из стали. При идентичном диаметре и объеме передаваемого тепла достаточно 3,5 метра медной трубы, при этих же параметрах стальной понадобится 27 метров.
Нагревательные элементы из меди самые дорогие, но эффективные. Если нет возможности потратиться на приобретение таких материалов, можно приобрести стальные трубы, но при этом их диаметр должен быть не менее 3,5 сантиметров.
Искрогашение
Любая палатка имеет отверстие для горячей дымовой трубы (дымоход). Кроме того, место вокруг печи всегда защищают огнеупорным ковриком на случай вылета горячих углей. Некоторые производители палаток рекомендуют откатить основание палатки и поставить изделие прямо на землю.
По трубе дымохода из печи поднимается не только горячий углекислый газ, но и искры. Если труба короткая, то они могут попасть на крышу палатки и стать причиной пожара. Чтобы этого не произошло, трубу дымохода делают длинной, чтобы в ней было не менее 2–2,5 м. Пока искра будет лететь по такому пути, она успеет погаснуть. Следовательно, дымоход выполняет роль искрогасителя.
Также техника безопасности подразумевает, что все предметы, которые могут загореться, должны находиться подальше от работающей печи. Ещё одна опасность — это угарный газ. Он должен выходить строго в дымоход. И сама палатка должна быть спроектирована так, чтобы в неё регулярно попадал чистый воздух.
Расчет мощности
Очень сложно сделать идеальную систему отопления, не зная мощности теплообменника. При расчете данного показателя следуют учесть следующие параметры:
- диаметр труб;
- длину нагревательного прибора;
- теплопроводность используемого металла;
- максимальную температуру горения топлива;
- скорость циркуляции жидкости.
Если установить данные исходные величины проблематично, можно воспользоваться усредненным расчетом, исходя из того, что для получения мощности в 1 кВт, понадобится метр трубы с радиусом не менее 2,5 сантиметров.
Пошаговое руководство
Изготовление бесканального теплообменника
- Подготовьте емкость, лучше металлическую, пластиковая будет дольше нагреваться.
- Установите бак к началу системы отопления.
- Проделайте в емкости 2 отверстия для выходов. Одно – вверху, через которое горячая вода будет выводиться. Второе – внизу, холодная жидкость будет поступать из труб системы.
- Разместите выходы правильно, от этого будет зависеть скорость отдачи тепла.
- Запаяйте герметично отверстия, чтобы температура воздуха не тратилась на батарею, а помещение равномерно прогревалось.
- Для трубки используйте медь, она должна хорошо гнуться и отдавать максимально тепло в помещение.
- Согните трубку в форме спирали, получился змеевик.
- Поместите спираль в бак, концы трубки нужно вывести наружу, хорошо закрепить их.
- Подсоедините к концам деталей фитинг с резьбой.
- Подсоедините к трубе регулятор мощности, его можно купить в магазине, стоит недорого, поэтому на самостоятельном изготовлении не стоит зацикливаться.
- Система вполне будет работать исправно и без регулятора, но он нужен для регулирования мощности, экономии электроэнергии. Мощность можно выставить по своему усмотрению.
- Подсоедините к термостату клеммы, после чего – провода питания.
- Чтобы бак не изнашивался от перепадов температуры, установите анод.
- Закройте герметично все элементы.
- Наполните бак водой, теплообменник готов.
Конструкция и монтаж
Нагревательный элемент может быть выполнен в виде регистра – решетки из гладко сваренных труб. Это наиболее распространенная конструкция. Однако ее можно упростить, сделав в виде бака, в форме цилиндра или прямоугольника. Основное условие – достаточная площадь для осуществления процесса обмена жидкости.
При изготовлении нагревательного элемента требуется соблюдение следующих правил:
- Во избежание закипания воды внутренний объем труб должен быть не менее 50 мм.
- Металл не должен прогорать, поэтому его рекомендуемая толщина составляет минимум 3 мм.
- При нагреве металл имеет способность расширяться, этот момент следует учесть, предусмотрев расстояние между стенами топки и нагревательным элементом.
Процесс установки нагревательного элемента состоит из нескольких простых действий:
- на дно топочной емкости печи уложить теплообменник;
- в печи предусмотреть отверстия для труб.
Далее следует соединить нагревательный элемент с отопительной системой и запустить воду.
Немного о подключении
Устанавливая теплообменник в печь, надо усвоить, что она в первую очередь предназначена для протапливания парной, а подогрев воды – функция второстепенная. Управлять двумя процессами одновременно невозможно, парилка в приоритете, поэтому воде в баке или змеевике ничего не стоит закипеть. Значит, надо обеспечить хороший отбор тепла или достаточную накопительную емкость. По этой же причине не рекомендуется применять в подобных системах циркуляционные насосы, течение горячей среды должно быть естественным.
Для монтажа системы можно применять как металлические, так и полимерные трубы, исключая полиэтиленовые. Диаметры трубопроводов для самотечных сетей следует принять не менее размеров патрубков нагревателя, а лучше – на один типоразмер больше. При этом расстояние от бака до печи не должно превышать 3 м.
Если теплообменник имеет вид экономайзера или змеевика, то необходимо установить в бане выносной бак, монтируя его выше уровня печи. Для монтажа данной системы допустимо использовать металлические или полимерные трубы, однако полиэтиленовые применяться не должны. Диаметр трубопроводов и сетей, где вода поступает самотеком, необходимо выбрать таким образом, чтобы показатель не был меньше габаритов патрубков нагревателя. Лучше всего, чтобы диаметр оказался на один размер больше. При этом шаг от бака до нагревательного оборудования не должен быть больше трех метров.
Преимущества теплообменника
Нагревательный элемент в системе отопления, установленный в печи, имеет свои преимущества. Среди основных плюсов можно выделить следующие:
- Простота изготовления и монтажа.
- В доме появляется комбинированное отопление, что дает возможность отапливать большие площади, а не только локально одно помещение.
- Возможность использовать разные виды топлива. Например, котлы ориентированы только на конкретный вид, а печь можно топить любыми твердыми энергоносителями.
- Печь придает интерьеру особый шарм и уют, а благодаря новой функции она будет приносить еще больше пользы.
Несмотря на очевидные преимущества, следует отметить, что в сравнении с котлами, сделанными в заводских условиях, КПД будет ниже, кроме того, отсутствует автоматический контроль температуры нагрева теплоносителя. Вместе с тем, стоимость заводских котлов не каждому по карману, а изготовление отопительной системы своими руками с использованием самодельного элемента нагревания под силу каждому.
Газовое оборудование
Хорошей альтернативой может послужить проведение газового отопления. Здесь используется магистральный газ. Такие котлы эффективные и надежные. КПД составляет 87% у самой простой модификации. У дорогих конденсационных модификаций этот показатель приближается к 97%.
Отопительный прибор компактный, безопасный и автоматизированный. Ему требуется обслуживание не чаще 1 раза в год. При этом в котельную приходится ходить исключительно для того, чтобы изменить настройки и проследить за их нормальным функционированием. По сравнению с твердотопливным, это довольно бюджетный агрегат.
Газовое оборудование имеет свои нюансы
Лекало
Для того чтобы обеспечить точную сборку, следует подготовить шаблон, который изготавливается из 20-миллиметрового куска фанеры. Отрезки труб нужно будет вставить в подготовленные отверстия и приварить к плоской детали. Сначала нужно завершить работу с одной заглушкой, после конструкцию можно будет перевернуть, чтобы продолжить манипуляции с другим элементом. Это позволит получить сердцевину теплообменника, которую после можно будет установить в корпус.
Область применения
Основным потребителем кожухотрубных теплообменников являются жилищно-коммунальные службы. Аппараты широко используются для комплектации инженерных коммуникаций. Теплосети активно применяют устройства для обеспечения горячего водоснабжения. По возможности, обустраиваются индивидуальные тепловые пункты, эффективность которых значительно выше, чем эффективность централизованных магистралей.
Кожухотрубные преобразователи тепловой энергии получили широкое распространение в нефтеперерабатывающей отрасли, химическом и газовом секторах. Востребованы аппараты и в теплоэнергетике. Кроме того, устройства незаменимы в пивоваренной и пищевой промышленности. Нередко кожухотрубчатые теплообменники используются в качестве конденсаторов, утилизаторов тепловой энергии отработанных газов и подогревателей.
Принципы маркировки теплообменных аппаратов
В настоящее время условные обозначения кожухотрубчатых теплообменников согласуют с международным стандартом ТЕМА в котором отражены основные принципы маркировки этого вида оборудования.
Обозначения теплообменников стандарта TEMA
Типы передних неподвижных головок по системе обозначений ТЕМА:
- A — тип – канальный, крышка – съемная;
- B — тип – колпак, крышка – сплошная;
- C — полностью канальный тип, имеется трубная доска и съемная крышка;
- N — полностью канальный тип, имеется трубная доска и несъемная крышка;
- D — оснащен специальной головкой с крышкой для работы в условиях повышенного давления.
Типы кожухов по системе обозначений ТЕМА:
- E — кожух с одним ходом в межтрубном пространстве;
- F — кожух с двумя ходами в межтрубном пространстве с продольной перегородкой;
- G — кожух с распределенным потоком;
- H — кожух с двойным расширенным потоком;
- J — кожух с разделенным потоком;
- K — ребойлер;
- X — кожух с поперечным потоком в межтрубном пространстве.
Типы задних головок по системе обозначений ТЕМА:
- L — с фиксированной трубной доской, как в неподвижной головке типа А;
- M —с фиксированной трубной доской, как в неподвижной головке типа В;
- N — с фиксированной трубной доской, как в неподвижной головке типа N;
- P — с плавающей головкой, уплотняемой снаружи;
- S — с плавающей головкой с опорным устройством;
- T — с плавающей головкой, которую можно извлечь из кожуха;
- U — головка с U-образным трубным пучком;
- W — головка с уплотняемой снаружи плавающей трубной доской.
Тип BET
Применение:
нагрев жидких сред при низком давлении пара в корпусе; охлаждение газа или нефти в корпусном пространстве.
Тип AES
Применение:
нередко применяется на нефтеперерабатывающих предприятиях при повышенном давлении в корпусном пространстве.
Тип BEP
Описание:
Съемный трубный пучок, наружное крепление решетки, трубная решетка может быть изготовлена из кованой стали, чтобы удовлетворить требованиям по расчетному давлению на корпус возможен в разном материальном исполнении, максимально допустимое давление в трубках — до 3000 psi, корпус полностью герметичен.
Применение:
при использовании особо опасных газов, при повышенном давлении в трубной части, где неисправности прокладок должны быть выявлены максимально быстро.
Тип BEM
Описание:
фиксированная трубная решетка с несъемным трубным пучком, приварена непосредственно к внутренней поверхности корпуса, конструкция один или два хода.
Применение:
Химическая промышленность; рабочие среды – воздух (при повышенном давлении), азот (газ в трубах, фреон в корпусе).
Тип BEU
Описание:
трубки U-типа; съемный или несъемный трубный пучок; многоходовая конструкция; широкий диапазон рабочего давления и по корпусу, и по трубкам.
Применение:
Химическая промышленность; подогреватели жидкостей; различные виды испарителей.
Тип AEW
Описание:
Съемный трубный пучок; конструкция в один или два прохода; двойное уплотнение плавающей трубной решетки с «O-образными» кольцами и резьбовыми фиксаторами с контрольными отверстиями для обнаружения возможных утечек, корпус размером от 6 до 42; широкий диапазон рабочих давлений.
Применение:
промышленные и бытовые охладители.
Рекомендации по выбору
Достоинства и недостатки вариантов теплообменников:
- Внутренний. Непосредственно контактирует с зоной горения, поэтому скорость нагрева теплоносителя высока. Однако, эффективность сгорания топлива в такой системе низкая, так как теплоноситель отнимает часть вырабатываемой энергии у топлива, что приводит к его перерасходу при прогревании парной. По расчетам, эффективность внутренних теплообменников не превышает 50%.
- Внешний. Нагревается медленнее, чем змеевик из-за удаленности от источника тепла, однако, также отнимает тепло от стенки топливника, снижая эффективность системы. Недостатки схемы — размещенный на стенке печи бак требует постоянного добавления холодной воды из-за ее быстрого прогрева, а также возможную опасность ожога при прикосновении к баку.
- Наружный. Повышает эффективность сгорания топлива в печи до 60% за счет охлаждения проходящих через дымоход горячих газов, что уменьшает время протапливания парной и количество требуемого топлива. Недостаток наружного варианта — необходимость добавления холодной воды при ее закипании в баке.
- Наружный проточный (экономайзер). При использовании экономайзера вода в баке успевает прогреться до температуры, необходимой для помывки за время протапливания парной, что делает эту схему лучшим вариантом использования для бань.
Важно! При изготовлении теплообменника и накопительного резервуара выбор формы и размера лучше производить, сравнивая их с печами известных производителей сходной мощности, так как эти печи прошли необходимую проверку эффективности. Комбинированные модели включают недостатки перечисленных вариантов и на сегодня не слишком популярны
Комбинированные модели включают недостатки перечисленных вариантов и на сегодня не слишком популярны.